All students taking Introduction to Physical Geology 001 are required to present a 5-10 minute PowerPoint lecture during the last three lab sessions of the lab component of the course. In addition to your own presentation, attendance for the other presentations during all of the sessions is mandatory and will account for 30% of your project grade.

Requirements and Suggestions for a Successful Presentation

Students should aim for about 10 slides and you should compose about a half page to a full page of notes for each slide within the notes section of your PowerPoint file. As addressed below, such notes will facilitate writing the accompanying research paper that is due in lab at the end of the semester.

Your first slide should be a title slide with your name on it.

In addition to photos and diagrams, you should include text in your slides to outline your main talking points or to list important facts. Avoid placing too much text on a single slide and DO NOT put your notes on each slide and read from them during your presentation. You should talk to your audience, not read from your slides.

All images should be referenced in your presentation. List the source (book or web site) in small type below the image.

Presentations should be emailed to your instructor as file attachments or delivered on a CD one day in advance so they can be loaded onto the classroom computer. You are NOT allowed to bring your own laptop to use – it takes too long and often problems occur getting laptops to recognize the projector.

You must also hand in a written report (5 pages, 12 pt. font, double spaced), based on your PowerPoint presentation, in fulfillment of the writing requirement for distribution courses at Hofstra. You should research your topics carefully, compile facts, and derive some real information to transfer to your student colleagues. By including factual notes with your slides, as suggested above, you will easily be able to extract and edit your notes to produce a paper. A list of references, including web site references, must be included in your paper as well as in your presentation. An accepted format for web citations is illustrated by the following example, which is a web site on how to format web site references:

Nancy Crane 1997. [Online]. Available: http://www.uvm.edu/~ncrane/estyles/apa.html [2000, August 31]. Note that the first date is the date the article was written and the date in brackets at the end of the citation is the date you visited the site.

Your paper can be handed on the day of your talk or by the last lab session of the semester at the latest.

The grade for the presentations will be derived as such: instructor grade (50%), attendance at all three presentation sessions (30%) and peer grade (20%).
The Geology faculty suggests that you chose a topic that you are interested in – for example the geology of a place you have visited or a geological or meteorological event that you have personal experience with. Other possible suggestions are listed below:

Hurricane/Earthquake Prediction and Preparedness

Famous Hurricanes
1938 “Long Island Express”; 2004 season: Charley, Frances, Ivan (magically reappearing as a hurricane after devolving to a tropical depression); Andrew, Gloria; Pacific Ocean Typhoons; Indian Ocean Cyclones; How Hurricanes Form; Hurricanes and the North Atlantic Oscillation; Hurricanes and El Nino;

Famous Earthquakes
1906 San Francisco; 1811-12 New Madrid; 1964 Alaska; 1884 Long Island, NY; 1999 Northridge, CA; 1995 Kobe, Japan; 1999 Izmit, Turkey, 1886 Charleston, SC; 1960 Chile; 1986 Lomo Prieta, CA; 1976 Tangshan, China; 1997 Iran; 1990 Philippines, San Andreas fault, Ramapo fault, etc.

Igneous Geology

Some Famous Volcanic Eruptions
1886 Krakatoa; 1960 Surtsey, Iceland; 1980 Mt. St. Helens; 1981 El Chichon, Mexico; 1942-43 Paricutin, Mexico; 1993 Pinatubo; 1991 Mt. Unzen, Japan; 1912 Mt. Lassen, CA; 1968 Cerro Negro, Nicaragua; 1985 Nevado del Ruiz, Colombia, etc.

Igneous Forms and Features
Palisades Intrusive Sheet, NJ
Columbia River Basalts, WA and OR
Deccan Traps, India
Iceland
Hawaii
Mt. Fuji, Japan
Shiprock, NM
Sierra Nevada batholith
Henry Mountains, UT
Crater Lake, OR (Mt. Mazama)
Yellowstone Caldera, WY
Mono Craters, CA

Regional Geology

Geology of Long Island
Coastal features, LI beach formation, Montauk Point, Fire Island, Hither Hills State Park, LI hydrology, LI glaciation, etc.
Geology of NYC and Vicinity
Manhattan, Brooklyn; The Bronx; Staten Island; Queens; Central Park; Prospect Park; Riverside Park; Glacial Geology; NYC Water Tunnel; Bedrock Geology of NYC; Bear Mountain; Hudson River; Hudson Submarine Canyon; 125th Street “Manhattanville” fault; etc.

Climate and Oceanography
Longshore drift on Long Island’s Barrier Beaches; Impact of Hurricanes on Long Island (or any other geographical location of interest); Why Glacial Periods Happen; How El Nino works; Trends in Hurricane Intensity and Frequency Over the Last 50 Years; Black Smokers and Sulphur-based Life Forms; Location of the World’s Deserts; The Greenhouse Effect and Global Warming; The Dust Bowl; Recent Droughts in the NY area; Drought and Decline of Ancient Civilizations; Climate Change and Human Evolution

Places
Geology of your favorite vacation spot, Grand Canyon or any National Park, any Caribbean Island
Spreading Centers
Oceanic Trenches
The “Proof” of Continental Drift

Miscellaneous and Sources of Information
Geological Processes that Create Gemstones
Origin and Distribution of Diamonds
Evaluation of Precious Stones
Mineral Uses
Use of Rocks as Industrial Materials
Geologists, Rocks, and Forensic Science
Dinosaur Extinction Theories
Mineralogy and Origin of Meteorites
Mineralogy of the Moon
Geology of any Planet or Planetary Moon
History of Geology
History of the Geological Timescale
Newspaper Geo-articles
Science or Nature or Geophysical Research Letters articles