MiSP Photosynthesis Worksheet \#2 - Photosynthesis and Temperature

Name \qquad Date \qquad

Introduction: Many things affect the rate (speed) at which photosynthesis occurs: how much light (light intensity), temperature, and amount of carbon dioxide are a few factors. Scientists know that temperature affects the speed of chemical reactions. Photosynthesis is a series of chemical reactions.

Scientists did an experiment on aspen trees to see how the rate of photosynthesis was affected by increasing temperature. They measured the speed of photosynthesis by measuring how much carbon dioxide was taken in to be used in photosynthesis.

Problem: What happens to the rate of photosynthesis as temperature is increased? The data in the table below were collected.

Temperature C	Carbon dioxide used per second
10	8
15	12
20	16
25	20
30	24
35	28
40	21
45	14
50	7
55	0

Graph the data on the next page.

- The manipulated/independent variable is \qquad .
- Label the X axis
- The responding/dependent variable is \qquad .
- Label the Y axis
- Connect the data points with straight lines.

\square

Discussion

1a. Complete this sentence: Between 10 and $35^{\circ} \mathrm{C}$ the rate of photosynthesis
\qquad

1b. Complete this sentence: Between 35 and $55^{\circ} \mathrm{C}$ the rate of photosynthesis
\qquad .
2. How does the rate of photosynthesis compare between $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$?
3. Why doesn't the rate of photosynthesis keep increasing as the temperature increases? Hints - in humans a high temperature much above $37{ }^{\circ} \mathrm{C}\left(98.6^{\circ} \mathrm{F}\right)$ can be fatal.
\qquad
\qquad
\qquad
4. Use the graph to predict the rate of photosynthesis at the following temperatures:

- $17^{\circ} \mathrm{C}$ \qquad
- $38^{\circ} \mathrm{C}$ \qquad
- $60^{\circ} \mathrm{C}$ \qquad

5. Use the information from the graph to calculate the unit rates of change for the carbon dioxide used. Use the formula to complete the chart on the next page.

Unit Rate of Change $=\frac{\Delta y}{\Delta x}=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{\Delta \text { Carbon dioxide used per second }}{\Delta \text { Temperature }}$

Graph segment Ordered Pairs $\left(x_{1}, y_{1}\right)$ $\left(x_{2}, y_{2}\right)$	Δ Carbon dioxide used per second Δy	Δ Temperature Δx	Unit Rate of Change $\Delta y / \Delta x$
$10-35^{\circ} \mathrm{C}$			
$35-55^{\circ} \mathrm{C}$			

6. Look at the two unit rates of change calculated in \#5. What do those numbers tell us about those sections of the photosynthesis rate graph? How does your answer support your sentence completions in 1a and 1b?
7. Use the unit rates of change (slopes) for the lines between $10-35^{\circ} \mathrm{C}$ and $35-55$ ${ }^{\circ} \mathrm{C}$, that you calculated in \#5, the equation of a line, and one ordered pair from each line segment to determine the y-intercept for the lines from $10-35{ }^{\circ} \mathrm{C}$ and $35-55{ }^{\circ} \mathrm{C}$. The equation for a line is

$$
y=m x+b
$$

where m is the unit rate of change (slope) and b is the y-intercept

y Intercept - Rate of photosynthesis graph line from $10-35{ }^{\circ} \mathrm{C}$	y Intercept - Rate of photosynthesis graph line from $35-55{ }^{\circ} \mathrm{C}$
$m=$	$m=$
Ordered pair $(x, y)=(\ldots, \quad$ Ordered pair $(x, y)=(\ldots, \ldots)$	
$y=m x+b$	$y=m x+b$
Solve for $b:$	Solve for $b:$

8. Use the unit rates of change and the y intercepts you calculated above to write an equation for the lines on the rate of photosynthesis graph segments $10-35^{\circ} \mathrm{C}$ and $35-55^{\circ} \mathrm{C}$,

Equation - Rate of Photosynthesis graph $10-35^{\circ} \mathrm{C}$	Equation - Rate of Photosynthesis graph $35-55^{\circ} \mathrm{C}$

MiSP Photosynthesis Worksheet \#2 L3
9. Use the indicated equations to calculate the rate of photosynthesis at the indicated temperatures.

Use the equation for $10-35^{\circ} \mathrm{C}$	Use the equation for $35-55^{\circ} \mathrm{C}$
$14{ }^{\circ} \mathrm{C}$	$47^{\circ} \mathrm{C}$
$38{ }^{\circ} \mathrm{C}$	$38^{\circ} \mathrm{C}$

10. Why are the results for $38^{\circ} \mathrm{C}$ different? Are we able to determine which is correct?
