PROBLEM OF THE MONTH, NOVEMBER 2016

For a given positive integer \(n \), we define the *ghost of \(n \)* to be the positive integer obtained by listing the digits of \(n \) twice. For example, the ghost of 2016 is 20162016. Similarly, the ghost of 891325 is 891325891325. Find a positive integer \(n \) with the property that its ghost is a perfect square.

Submit your solutions to professor Dan Ismailescu, Mathematics Department via email at dan.p.ismailescu@hofstra.edu, or bring it in person at 103C Roosevelt Hall.

Solution - Problem of the Month, October 2016

Congratulations to Leonard Arkhanhelskyi for solving correctly the October Problem!

(a) You are given a 11 \(\times \) 11 checkerboard with a missing corner. It can be partitioned into a collection of smaller square checkerboards in various ways. For example into 120 1 \(\times \) 1 checkerboards or into a 10 \(\times \) 10 and twenty 1 \(\times \) 1 checkerboards etc. In the figure below a partition into eleven squares is shown. What is the minimum number of smaller square checkerboards that this 11 \(\times \) 11 checkerboard with a missing corner can be partitioned into? Show how this can be done. Note we are not asking for a proof of minimality.

(b) Solve the same problem for a 12 \(\times \) 12 checkerboard with a missing corner 1 \(\times \) 1 square.

(c) Solve the same problem for a 13 \(\times \) 13 checkerboard with a missing corner 1 \(\times \) 1 square.

(a) 10 squares needed
(b) 10 squares needed
(c) 11 squares needed