SOLUTION OF THE PROBLEM OF THE MONTH, SEPTEMBER 2019

Consider the integer sequence $\{x_n\}_{n\geq 0}$ given by $x_0=0, x_1=1$ and

$$x_n = 4x_{n-1} - x_{n-2}$$
, for all $n \ge 2$.

The first few terms of this sequence are

 $0, 1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, \dots$

Find the smallest $n \geq 2$ such that x_n is a prime number, or prove that such an n does not exist.

Solution. It turns out that for every $n \geq 2$, the term x_n is composite. We will need the following statement which can be easily proved by induction.

For every $n \geq 2$ we have

$$(1) x_{n+1}^2 - 4x_n x_{n+1} + x_n^2 = 1.$$

Assume that $x_{n+1} = p$, where p is a prime ≥ 3 . Then, the above equality can be written as $p^2 - 4px_n + x_n^2 = 1$ or $x_n^2 - 4px_n + p^2 - 1 = 0$. Regard this as a quadratic equation in x_n .

Since x_n is an integer, the discriminant must be a perfect square, that is, $(4p)^2 - 4(p^2 - 1) = 4(3p^2 + 1)$ is a perfect square, from which $3p^2 + 1 = q^2$, for some positive integer q.

This can be written as $3p^2 = (q-1)(q+1)$.

Note that if p divides both q-1 and q+1, then it divides their difference, hence p=2, impossible. Since p is a prime, it follows that p^2 divides either q-1 or q+1. In either case, we have that $p^2 \leq q+1$.

But then

$$3p^2 = (q-1)(q+1) \ge (p^2-2)p^2 \implies 3 \ge p^2-2 \implies p=2$$
, impossible.

In conclusion, for all $n \geq 2$, x_n is necessarily composite.