The chart below illustrates how HUHC’s courses are integrated into the typical first two years of an engineering curriculum. The Honors College 12-credit sequence (Culture and Expression) fulfills University-wide social sciences and humanities requirements during the first year. The engineering curriculum’s required mathematics and physical sciences courses, along with introductory and general engineering courses, constitute most of the rest of the first two years of course work. There are some minor differences in this sequence for electrical and biomedical engineering students, and students who enter Hofstra with advanced placement (AP) or other college credits are able to proceed more quickly to higher level courses. The following chart is meant to serve as a general template, as it represents the suggested common curriculum for the first two years for mechanical, civil, and industrial engineering students.

Recommended Course Sequence: Semesters 1-4

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>SECOND SEMESTER</th>
<th>THIRD SEMESTER</th>
<th>FOURTH SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 71: Calculus I (4 s.h.)</td>
<td>MATH 72: Calculus II (4 s.h.)</td>
<td>MATH 73: Calculus III (4 s.h.)</td>
<td>MATH 131: Elementary Differential Equations (3 s.h.)</td>
</tr>
<tr>
<td>PHYS 11A: General Physics (4 s.h.)</td>
<td>PHYS 12A: General Physics (4 s.h.)</td>
<td>CHEM 3A: General Chemistry I (3 s.h.)</td>
<td>CHEM 3B: General Chemistry I Lab (1 s.h.)</td>
</tr>
<tr>
<td>ENGG 15: Designing the Human-Made World (3 s.h.)</td>
<td>ENGG 16: Comprehensive Engineering Design (3 s.h.)</td>
<td>ENGG 25: Statics (3 s.h.)</td>
<td>ENGG 26: Dynamics (3 s.h.)</td>
</tr>
<tr>
<td>ENGG 10: Computational Methods for Engineers (3 s.h.)</td>
<td>ENGG 30: Engineering Circuit Analysis (3 s.h.)</td>
<td>ENGG 28: Strength of Materials (3 s.h.)</td>
<td></td>
</tr>
</tbody>
</table>
Our Mission
Hofstra University Honors College (HUHC) aims to be at the forefront of Hofstra University’s pursuit of academic excellence. We promote intellectual engagement among students, faculty, and the broader Hofstra community. HUHC is compatible with all fields of study and welcomes students from all disciplines.

A History of Success with Engineering Students
From its inception, HUHC has had a large number of engineering majors among its students. This is because HUHC’s curriculum is flexible and adapts to the individual interests and needs of our students, including those who are pursuing highly structured degree programs like engineering.

A Supportive Community
The HUHC community provides an extraordinary level of support to highly motivated students. With supplemented advising and carefully planned social and curricular programming, we ensure that HUHC students feel like part of a community that knows them personally and can respond to their needs as they arise. Along with the Engineering Department, HUHC is another home, another comfortable place with friends and peers, and another base of support for academic and social life at Hofstra.

An Extraordinary First-Year Curriculum
All entering Honors College students take a linked four-course sequence called Culture and Expression (two courses in the fall and two courses in the spring). Taught by some of Hofstra’s best faculty, these courses give students a cross-disciplinary view of ancient (fall semester) and modern (spring semester) cultures. All four Culture and Expression courses fulfill University requirements in the social sciences and humanities. Thus, they are enriched versions of courses that all Hofstra students are required to take.

Earning Honors Credit in Engineering Courses
As engineering students move on to their sophomore, junior and senior years, they may pursue honors credit in regular engineering courses. In these “honors options,” engineering students meet with a faculty member who develops an enriched curriculum an engineering course that the student is already planning to take. Throughout the semester, the student attends the regular course sessions, and also meets outside of class with a faculty member to discuss the supplementary material. This structure leads to richer faculty-student relationships, and often advances the mentoring process that is crucial for success in college and beyond. Most importantly, it allows students to focus their course work where their interests and passions are most fully engaged.

The Workload: It’s About Quality, Not Quantity
Honors work has always been defined qualitatively rather than quantitatively. Typically it is thicker, richer, and more fully informed by theoretical themes. As a result, many students report that their honors courses bring out the best in them without interfering with other commitments. This makes sense, since most of the time, they are choosing to do their honors work in courses they find intrinsically interesting.

Kyle Castoria ’17 of Long Beach, NY, received dual bachelor’s degrees in mechanical engineering and physics. Having studied with professors he truly liked and respected, Kyle has been able to take advantage of some interesting opportunities during his time at Hofstra. “I spent one of my summer breaks in South Korea where I studied the Korean language at Changwon National University in preparation for an internship position at Samsung Techwin [now Hanwha Techwin America]. Working under a physics professor at Hofstra and in conjunction with an electrical engineering professor from Princeton, I have had the opportunity to research, and will soon publish, a paper on quantum mechanical computations. I also presented a poster of this work at a physics conference in New Orleans during the spring, which is one of the largest physics conferences in the country. I was engaged in another research project where I was designing and building a scanning tunneling microscope, which uses quantum tunneling to create pictures of atomic surfaces.”

Hofstra has kept him busy doing what he is passionate about, but it hasn’t been all work — he was a part of the Hofstra club rugby team, and HUHC introduced him to a volunteer experience at The INN (Interfaith Nutrition Network) in Hempstead, which provides food, shelter, long-term housing, and supportive services in a dignified and respectful manner for those in need. Kyle spent the summer after graduation working at The Inn, serving breakfast and lunch, helping guests create resumes in the career development center, and writing a computer software program to streamline The INN’s intake process and recordkeeping.

He accepted a fellowship at Princeton University in its electrical engineering PhD program and is looking forward to his next chapter.