
DESIGN JOURNAL

Operation: Safe Water for Bangladesh

Most engineers use a design journal to record their work. A design journal serves several purposes. It helps to ensure that you follow the informed design process so you can develop the best solution possible. In case you come up with a patentable invention it shows how and when you developed the idea. Please use it to keep track of everything you do to solve this problem, and be sure to date and initial every entry.

Name		
Period		
School		
Date		
Design Team M	1embers:	

DATE_____Initials_____

The Grand Design Challenge

Operation: Safe Water for Bangladesh

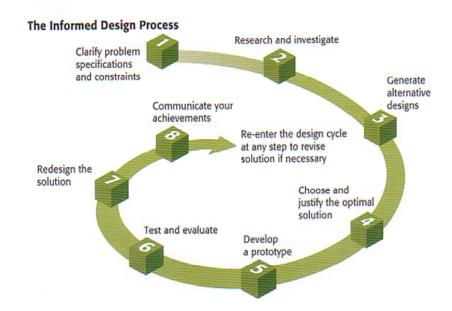
Congratulations! Your training with Engineers across Borders has come to an end and now you are ready to take on your first challenge as a junior engineer. Your task, along with your teammates is to design and build a multi-system water filtering device that can produce safe drinking water for a family of five living in Bangladesh.

As with every engineering design challenge, there are design specifications and constraints that must be considered as you develop your solution; they are listed below:

Design Specifications:

- 1. Must be a multi-system filtering device (more than one filtration component, not just different media)
- 1. Must effectively remove contaminants from the water
- 2. Must have a turbidity measurement of <5 NTU's
- 3. Must be easy for the locals to use and take apart to clean
- 4. Must be capable of producing 20 liters per day of safe drinking water to serve five people

Design Constraints:


- 1. Must be made of materials native to Bangladesh
- 2. Must be completed in teacher-specified number of days
- 3. Must be of little or no cost

There are three lists below; think of these as possible construction materials and filter media. You may use other materials beyond the list; your teacher will decide if there will be a cost.

List 1 : Items that can be	List 2: Media easily found	List 3: Items available	
reused as possible building	in Bangladesh	to purchase	
materials			Cost
plastic cups	rocks	spigots	5.00
empty plastic bottles	pebbles	tubing	.50 p/in.
buckets	course sand	rubber bands	.10 ea.
clay	fine sand	tape	.50 p/ft.
scraps of material	charcoal	glue	1.00 p/stick
scraps of wood	grass	string	.50 p/ft.
cardboard	weeds		
	vines		
	paper		
	alum	_	

- A T.C	1.365.1.
DATE	Initials

The Informed Design Process

included. (Hint-refer to page 2.)

and in many cases, how much money the

finished design can cost.

CLARIFY THE PROBLEM SPECIFICATIONS AND CONSTRAINTS

State the Design Problem in Your Own Words. The statement should not be long. Start with one clear sentence and add more sentences if there are important ideas that should be

DESIGN SPECIFICATIONS: Design specifications tell how a design solution	Describe the Specifications	
must function to fulfill the challenge. These are the performance requirements that the solution must fulfill.	Describe the Constraints	GROUP ACTIVITY
DESIGN CONSTRAINTS: Constraints are the limits imposed upon the solution often related to the kinds of materials you can use, how much time is available,	Describe the Constraints	СТІVІТУ

DATE

Initials

RESEARCH AND INVESTIGATE

Engineering design involves gathering lots of ideas of many sources and making use of them to understand the challenge better and to get a sense of how others have addressed similar tasks. Working through the KSB's was a major part of this phase. But you may need to know more. Organize what you know and what you need to find out.

Summarize what you learned in the KSB's below in Column 1. Discuss with teammates what you think you may need to find out, then write those things in Column 2.

Column 1_ What I know	Column 2_What I need to find out	_
		INDIVIDUAL ACTIVITY
		A
		=

In this box, summarize the research you conducted as a result of Column 2.	

Design Journal Page 4

_____ Initials __

GENERATE ALTERNATIVE DESIGNS

Engineering designers are famous for coming up with lots of ideas, from which they pick one to develop as a prototype. They brainstorm ideas without worrying about how good they are. They do these things so that they can develop something new and different, while still meeting the specifications and constraints of the project.

In this phase of the informed design process, you will first look around and see what others are doing.

That includes:

- Water Organizations
- Health Organizations
- Engineering Companies
- University Researchers
- Engineers without Borders
- Ordinary People

The links below might give you some ideas; check other sites as well.

Web sites:

- http://thewaterproject.org/biosand water filtration
- http://inhabitat.com/6-water-purifying-devices-for-clean-drinking-water-in-the-developing-world/
- http://www.cdc.gov/safewater/sand-filtration.html

Possible Solutions

- 1. Sketch two different possible ideas you feel might be possibilities for your final solution.
- 2. Write a short description below each sketch that explains your design and identifies your choice of materials and media.

Initials

Choose and Justify the Optimal Solution

WEIGH OPTIONS / PICK an IDEA:

Use a Pugh chart to determine which idea is the best solution and to justify your choice as a prototype.

The design specifications are listed in the left column. Then look at each team member's sketches and number them to correspond to the chart. Rate each sketch on a scale of 1(low) to 5 (high).

PUGH CHART Who's design? Ex. Amy 1, Amy 2, Seth 1, Seth 2	Design 1	Design 2	Design 3	Design 4	Design 5	Design 6	Design 7	Design 8
Device is multi-system; has more than two components								
Best capability to remove contaminates from the dirty water								
Easy for the locals to use and clean when needed								
Made of native materials								
No Cost								
Other								
Other								
Total Points								

MATIN 1 - 1 1 1 1 1 - 1 - 1
Which design ranked highest and was chosen?

DATE	Initials
DAIE	initiais

Detailed Drawing of the Chosen Filtering Device

•	Each team member	draws the chosen	filtering device	in the space below.
---	------------------	------------------	------------------	---------------------

•	The drawing must be very neat; include arrows and write notes to help clarify
	understanding of the construction, materials, media, and any other important details.

	INDIVIDUAL ACTIVITY

DATE_____Initials_____

Develop a Prototype

Make preparations to build your prototype.

Here's a reminder of your materials and media list. Circle which items you will use.

List 1: Items that can be reused possible building materials	List 2: Media easily found in Bangladesh	List 3: Items available to purchase	
plastic cups	rocks	spigots	5.00 ea
empty plastic bottles	pebbles	tubing	.50 p/in.
buckets	course sand	rubber bands	.10 ea.
clay	fine sand	tape	.50 p/ft.
scraps of material	charcoal	glue	1.00 p/stick
scraps of wood	grass	string	.50 p/ft.
cardboard	weeds		
	vines		
	paper		
	alum		

What safety issues will you consider? _		
· · · · · ·		

Create a Plan of Action

There'll be lots of things to do. Use the chart below to list the tasks that need to be done in the order needed to complete them; who will do what, when, and mark done or not.

Task	Who	Due Date	Done

You are now ready to construct your water filtering device; get started!

Take lots of pictures to use in your presentation.

DATE	Initials
JAIE	initiais

GROUP ACTIVITY

Before you begin testing, determine the cost of your filtering device; make a list of materials you used and show the total cost.	the
	Cost
TOTAL COST	

It's time to see how well your device performs and meets the specifications and constraints of the challenge!

- Acquire your 16 oz of contaminated water from your teacher and a stop watch or timer.
- 2. Test your water sample to determine what contaminates are in it; use what you learned in KSB 4 and your turbidity tube. Write it in the space provided.
- 3. Start timing when you start to pour the water into your device.
- 4. This will be a ten minute test. If all your water has filtered out before ten minutes is up, stop the timer and note the minutes.

DATA COLLECTION SHEET	Time it took to Filter Water	(sec's)
-----------------------	------------------------------	--------	---

	BEFORE	AFTER	CONCLUSIONS - Write a short summary
	FILTERING	FILTERING	of what happened
Water Amount			
Turbidity in NTU's			
Detect Bacteriological Contaminant? (Yes or No)			

DATE	Initials
JAIE	initiais

Detect Chemical			
Contaminant? (Yes or No)			
Is your device capable of producing 20 liters of safe drinking water a day for a family of five?		inking water a day for a family of five?	
Amount of water th	nat filtered in	10 minutes	(in liters)
Based on amt. and time above, how much water can your device filter in one hour?			
Based on amt. and	time above,	how much w	ater can your device filter in 24 hours?
Show your work here:			

Check yes or no if the specification or constraint was met.				
Yes	No			
		Is your device a multi-system filtering device? (more than one filtration component, not media)		
		Did your device remove the contaminants from the water?		
		Does your filtered water meet the required turbidity measurement of <5 NTU's?		
		Is it made of materials native to Bangladesh?		
		Is it easy for the locals to use and take apart to clean?		
		Can it produce 20 liters per day of safe drinking water to serve a family of five?		
		Did you complete the device and testing in the required amount of time?		
	I	How much did your device cost?		

DATE	Initials
-	

What conclusions about your device did you reach as a result of the testing?	\neg			
What conclusions about your device did you reach as a result of the testing? Please try to address each area of the specifications and constraints.				
riease try to address each area of the specifications and constraints.				
7 Redesign the Solution				
nedesign the solution				
Think about what you learned through the design and/or testing of your prototype and think about how you would make changes to the design if you were to do the activity again. What did you learn through the design and/or testing of your model that would inform its redesign?	_			
What would the filtering device look like if you built it again? Sketch below and explain.				
	_			
DATE				

If time allows, redesign your system and test and evaluate again.

Your teacher will provide you with the information you'll need to redesign.

Communicate Your Achievements

Plan and deliver a presentation about your design solution to the entire class. Use a variety of media (PowerPoint, WEB 2.0 Tools, etc.). Your teacher will supply WEB 2.0 information.

Dress professionally for your presentation.

In the presentation:

- Describe your design
- Demonstrate how you tested your design.
- Explain results of the testing.
- Describe how you met the specifications and constraints of the challenge, or not.
- Explain improvements you would make as a result of the testing.
- Thinking about the project as a whole, what were the most challenging steps?
- What was the most important thing you learned?
- Include pictures of your design and process as you and your team worked on this challenge.

Rubrics

STUDENT PRESENTATION RUBRIC	Student		Score
Overall Presentation Quality			
Introduction (interest and appeal)		5	
Clarity and sequence of presentation		5	
Student dressed professionally		5	
Clarity of speech, pacing, pitch		5	
STEM Learning			
Students explained what they learned		5	
Students explained tradeoffs they made in arriving at their group design solution		5	
Students proposed revisions upon what they learned		5	
Students played an active role in developing and making the presentation		5	
Use of Media			
Use of multiple types of media		5	
Quality of materials		5	
50 TOTAL POINTS			
Teacher Comments:			

DATE	Initials
JAIE	initiais

ST	UDENT DESIGN JOURNAL RUBRIC		Score		
1.	1. Clarify design challenge, specifications and constraints				
	Student accurately described the design challenge, its real-world context, and all the performance criteria and constraints.	10			
2.	Research and Investigate				
	Student described ideas relevant to the challenge that were gained from KSB tasks, and other research work needed.	10			
3.	. Generate alternative design solutions				
	Student described two or more different ideas for possible design solutions using words and drawings.	10			
4.	Choose & justify optimal solution				
	Student analyzed the pros and cons of alternative designs, identified tradeoffs, and explained how the selected design may optimally meet criteria and constraints. Filled out the Pugh Chart	10			
5.	Develop a prototype				
	Student used appropriate tools and materials to make a physical or virtual	10			
	design prototype that met the design criteria and constraints.				
6.	5. Test and Evaluate				
	Student developed, conducted, and documented appropriate tests and data to assess the prototypes' performance with respect to criteria and constraints	10			
7.	Redesign the solution				
	Student described two or more different ideas for possible design solutions using words and drawings.	10			
8.	Communicate your achievements (See presentation evaluation criteria).				
	Students contributed to a team presentation about their design and the design process.	10			
	80 TOTAL POINTS				
Teacher Comments:					

DATE	Initials
-	