FORCE AND ACCELERATION

Your teacher will demonstrate some principles of force and motion. After watching the demonstration, answer the questions below.

1. When the cars were placed on the desk, why didn’t they move by themselves?
   ____________________________________________________________________
   ____________________________________________________________________

2. What happened to the small car when your teacher pushed it gently?
   ____________________________________________________________________

3. Why did this happen?
   ____________________________________________________________________
   ____________________________________________________________________

4. What happened when your teacher gently pushed the larger car?
   ____________________________________________________________________
   ____________________________________________________________________

5. Why did this happen?
   ____________________________________________________________________
   ____________________________________________________________________
6. Why did the small car stop moving after it was pushed?
____________________________________________________________________

7. The cars behaved according to Newton’s first law of motion. Explain Newton’s law in your own words.
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________

8. What happened when the large car was placed on an incline and released without pushing?
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
Why did this happen?
____________________________________________________________________

9. The force that caused the large car to move on the incline is called *gravity*. Gravity is an attractive force between any two objects that depends on the mass of each object and the distance separating the centers of gravity. The mass of Earth is much greater than that of the car (or you or your school); therefore, the car is pulled toward Earth.

In the demonstration, the toy cars were pushed once. What would happen if a constant force were applied to the cars?
____________________________________________________________________

Gravity is a constant force. Suppose you dropped a pumpkin from the top of the 828 m tall (2,717 ft tall) Burj Khalifa in Dubai, United Arab Emirates (currently the world's tallest freestanding
structure). The velocity at which the pumpkin would be falling toward Earth at the end of each second (ignoring air resistance) is given below.

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>Velocity (ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
</tr>
<tr>
<td>6</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>224</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>288</td>
</tr>
<tr>
<td>10</td>
<td>320</td>
</tr>
</tbody>
</table>

**Graph this data:**
1. Label the $x$- and $y$-axes.
2. Decide on an appropriate interval for both the $x$- and $y$-axes.
3. Plot the data.
4. Draw a line connecting the points on your graph.