MiSP Topographic Maps Worksheet #1a L2

Name _____________________________ Date _____________

SLOPE AND TOPOGRAPHIC CONTOURS

Introduction:

Topographic contours are shown by lines of different widths. Each contour is a line of equal elevation; therefore, contours never cross. They show the general shape of the terrain. To help the user determine elevations, index contours are wider. Elevation values are printed in several places along these lines. The narrower intermediate and supplementary contours found between the index contours help show more details of the land surface shape. Contours that are very close together represent steep slopes. Widely spaced contours or an absence of contours means that the ground slope is relatively level. The elevation difference between adjacent contour lines, called the contour interval, is selected to best show the general shape of the terrain. A map of a relatively flat area may have a contour interval of 10 feet or less. Maps in mountainous areas may have contour intervals of 100 feet or more. The contour interval is printed in the margin of each U.S. Geological Survey (USGS) map. [This paragraph was excerpted from http://egsc.usgs.gov/isb/pubs/booklets/symbols/]

Materials:

- Topographic Maps Worksheet #1b
- Ruler

Procedure:

Check off each step as you complete it.

- [] Examine the simple map of Ellipse Island on Worksheet #1b. Note the key information.
- [] Two teams of hikers traveled to an elevation of 100 feet on the island. One group followed the path indicated by the line from A to B. The other group followed the line from C to D. Measure the horizontal map distance (to the nearest 0.25 inch) to each contour line that each group hiked across. Write the measurements on the chart on the next page.
- [] Convert the map distances to horizontal distance (distance relative to the ground) traveled by each team of hikers by multiplying the measured distance on the map (inches) times the scale distance: (measured map inches) x 0.5 mile/.25 inch.
Record the data here:

<table>
<thead>
<tr>
<th>West to East Hikers (A to B)</th>
<th>Map Distance to the nearest 0.25 inch</th>
<th>Hiking Distance to the nearest 0.5 mile (COLUMN B) x 0.5 mile/.25 inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Distance Hiked to Contour Intervals:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>West to East Hikers (C to D)</th>
<th>Map Distance to the nearest 0.25 inch</th>
<th>Hiking Distance to the nearest 0.5 mile (COLUMN B) x 0.5 mile/.25 inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Distance Hiked to Contour Intervals:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph the data:

Graph the data on the next page to show the relationship between the hiking distance (miles) for each group and the contour interval (elevation above sea level).

- Label the x-axis with hiking distance (miles).
- Label the y-axis with elevation (feet).
- Connect the data points for each group of hikers. Use two different colors and write a key for the graph.
Key

A-B distances and height:

C-D distances and height:
Discussion Questions:

1. We do not know what the highest elevation is on Ellipse Island but we do know it is less than 120 feet. How do we know it is less than 120 feet?

2a. A map is two-dimensional but the trails these hikers were on are three-dimensional. The distance each group walked from A to B or C to D was longer than it would have been if they had been walking on a flat island. Look at the graph. Which group traveled the greatest horizontal distance in miles (horizontal distance = distance traveled from A to B or C to D) if there was no change in elevation?

2b. Which group traveled the greatest TOTAL distance (distance along the slope) in miles? How do you know that?

2c. Look again at the graph. Which group had the steepest climb? How do you know that?

3. One of the hikers in the group traveling the A to B path broke off from the group and hiked for 4 miles around the island, using a GPS devise to stay at an elevation of 40 feet (his path took him along the 40’ contour line). What would a graph of his distance traveled versus elevation look like?

4. Using the graph, determine the elevation of each group after they’ve hiked 2.25 miles relative to the ground:

A to B hiking group after 2.25 miles — elevation = ______________ feet

C to D hiking group after 2.25 miles — elevation = ______________ feet

5. Look at the graph you drew. You will compare the average grade (steepness) of the hike for the two groups by calculating the unit rate of change (slope) of each line.

Unit Rate of Change = \(\frac{\Delta \text{ Elevation (feet)}}{\Delta \text{ Hiking Distance (miles)}} \)

\[\Delta y = \frac{(y_2 - y_1)}{(x_2 - x_1)} \]

<table>
<thead>
<tr>
<th>Graphed data</th>
<th>Ordered Pair</th>
<th>(\Delta y)</th>
<th>(\Delta x)</th>
<th>Unit Rate of Change (slope) (\frac{\Delta y}{\Delta x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to B hikers</td>
<td>((x_1, y_1)) ((x_2, y_2))</td>
<td>(\Delta y)</td>
<td>(\Delta x)</td>
<td>(\frac{\Delta y}{\Delta x})</td>
</tr>
<tr>
<td>C to D hikers</td>
<td>(\frac{\Delta y}{\Delta x})</td>
<td>(\frac{\Delta x}{\Delta y})</td>
<td>(\frac{\Delta x}{\Delta y})</td>
<td></td>
</tr>
</tbody>
</table>

6. How do the unit rates of change (slopes) of the graphed data for the two routes compare? Discuss numerical value and sign (positive/+ or negative/−).

7. What would be different about the unit rates of change (slopes) if we graphed the hikers going down the hills (B to A and D to C)?

