MiSP Weather — Wind Speed and Direction Worksheet #2 L1

TORNADOES — PRESSURE AND WIND SPEED

Introduction (excerpts from http://www.srh.noaa.gov/jetstream/tstorms/tornado.htm):

A tornado is a violently rotating (usually counterclockwise in the northern hemisphere) column of air descending from a thunderstorm and in contact with the ground.

The United States experiences more tornadoes by far than any other country. In a typical year about 1,000 tornadoes will strike the United States. The peak of the tornado season is April through June, and more tornadoes strike the central United States than any other place in the world. This area has been nicknamed "tornado alley."

Most tornadoes are spawned by thunderstorms. Tornadoes can last from several seconds to more than an hour, but most last less than 10 minutes. The size and/or shape of a tornado are no measure of its strength.

Occasionally small tornadoes do major damage. On the other hand, some very large tornadoes, over a quarter-mile wide, have produced only light damage.
The Fujita Scale

<table>
<thead>
<tr>
<th>F-Scale Number</th>
<th>Intensity Phrase</th>
<th>Wind Speed</th>
<th>Type of Damage Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>Gale tornado</td>
<td>40–72 mph</td>
<td>Some damage to chimneys; breaks branches off trees; pushes over shallow-rooted trees; damages sign boards.</td>
</tr>
<tr>
<td>F1</td>
<td>Moderate tornado</td>
<td>73–112 mph</td>
<td>The lower limit is the beginning of hurricane wind speed; peels surface off roofs; mobile homes pushed off foundations or overturned; moving autos pushed off the roads; attached garages may be destroyed.</td>
</tr>
<tr>
<td>F2</td>
<td>Significant tornado</td>
<td>113–157 mph</td>
<td>Considerable damage. Roofs torn off frame houses; mobile homes demolished; boxcars pushed over; large trees snapped or uprooted; light-object missiles generated.</td>
</tr>
<tr>
<td>F3</td>
<td>Severe tornado</td>
<td>158–206 mph</td>
<td>Roof and some walls torn off well-constructed houses; trains overturned; most trees in forest uprooted.</td>
</tr>
<tr>
<td>F4</td>
<td>Devastating tornado</td>
<td>207–260 mph</td>
<td>Well-constructed houses leveled; structures with weak foundations blown off some distance; cars thrown and large missiles generated.</td>
</tr>
<tr>
<td>F5</td>
<td>Incredible tornado</td>
<td>261–318 mph</td>
<td>Strong frame houses lifted off foundations and carried considerable distances to disintegrate; automobile-sized missiles fly through the air in excess of 100 meters; trees debarked; steel-reinforced concrete structures badly damaged.</td>
</tr>
</tbody>
</table>

The Fujita Scale (also called the “F-Scale”) was originally developed by Dr. Tetsuya Theodore Fujita to estimate tornado wind speeds on the basis of damage left behind by a tornado.
Problem:

- Two variables that can be measured in tornados are the core pressure difference (the difference between the air pressure inside the funnel and the air pressure outside the funnel) and wind speed. You will use a computer simulation to examine the correlation between these two variables. As the difference between the air pressure inside a tornado funnel and the air pressure outside a tornado funnel increases, what happens to the wind speed?

Hypothesis:

If the difference between the air pressure inside a tornado funnel and the air pressure outside a tornado funnel increases, then

______________________________________________________________________________

______________________________________________________________________________

Procedures:


  o Keep the funnel diameter constant at the narrowest setting by moving the left slider to the far left.
  o Use the right slider to increase the core pressure difference in intervals of 1.0 in. Hg (inches of mercury). Click “GO” to observe a tornado.
  o Observe the damage each tornado produces.
  o Estimate the F-Scale difference and record the F-Scale number and the wind speed on the data chart below.
  o Press reset between each trial.
**Record your data:**

<table>
<thead>
<tr>
<th>Core Pressure Difference (in. Hg)</th>
<th>Wind Speed (mph)</th>
<th>Intensity (F-Scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 (no tornado)</td>
<td>Not applicable (no tornado)</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Graph your data:**

Graph the data on the next page to show the relationship between the core pressure difference (in. Hg) and the wind speed (mph).

- Label the $x$-axis.
- Label the $y$-axis.
- Connect the data points by drawing a straight line between them.
Discussion Questions L1-3

1a. Explain the relationship between tornado core pressure difference and wind speed by completing this statement: As the DIFFERENCE between the air pressure inside a tornado and the air pressure outside a tornado INCREASES,

the wind speed of the tornado ________________________________.

1b. How is the relationship in 1a shown by the graph?

___________________________________________________________________________

___________________________________________________________________________

2. The relationship between core pressure difference and wind speed is not a straight line. On the graph, where did a 1.0 in. Hg increase in core pressure produce the greatest change in wind speed? How do you know that? Refer to the graph in your answer.

___________________________________________________________________________

___________________________________________________________________________

3. Using the graph, predict what a tornado’s wind speed would be if the core pressure difference is 7.0 in. Hg.

___________________________________________________________________________

___________________________________________________________________________