## MiSP Phase Changes Worksheet \#3 L3 <br> ASSESSMENT

Name $\qquad$ Date $\qquad$
L 1, 2, 3
Introduction: The graph below was drawn from data collected as a substance was heated at a constant rate. Use the graph and word bank to answer the following questions. -


| Word bank: | Some words may be used more than once. Some not at all. |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| gas | solid | faster | cool | boiling |  | slower

At point $A$, the beginning of observations, the substance exists in a solid state. Material in this phase has a definite volume and definite shape. With each passing minute, $\qquad$ is added to the substance. This causes the molecules of the substance to $\qquad$ more rapidly which we detect by an increase in the $\qquad$ of the substance. At point $B$, the temperature of the substance is $\qquad$ ${ }^{\circ} \mathrm{C}$. The solid begins
to $\qquad$ At point $C$, the substance is completely $\qquad$ or
in a $\qquad$ state. Material in this phase has a definite volume and does not have a definite shape. The energy put into the substance between minutes 5 and 9 was used to convert the substance from a $\qquad$ to a $\qquad$ .

Between 9 and 13 minutes, the added energy increases the
$\qquad$ of the substance. During the time from point $D$ to point
$E$, the liquid is $\qquad$ . By point $E$, the substance is completely in the
$\qquad$ phase. Material in this phase does not have a definite volume or a definite shape. The energy put into the substance between minutes 13 and 18 converted the substance from a $\qquad$ to a $\qquad$ state. Beyond point $E$, the substance is still in the $\qquad$ phase, but the molecules are moving $\qquad$ as indicated by the increasing temperature.

Which of these three substances was likely used in this phase change experiment?

| Substance | Melting <br> point | Boiling point |
| :---: | :---: | :---: |
| Bolognium | $20^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ |
| Unobtainium | $40^{\circ} \mathrm{C}$ | $140^{\circ} \mathrm{C}$ |
| Foosium | $70^{\circ} \mathrm{C}$ | $140^{\circ} \mathrm{C}$ |

## L2,3

1a. The unit rate of change (slope) of each of the lines between points $B+C$ and $D+E$ is 0 (zero). That tells us that in those two lines, as time passes, the temperature $\qquad$ .

1b. Since heat is still being added to the substance between points $B+C$ and $D+E$, what is the heat doing?

2a. Calculate the slope between points $C+D$
$2 b$. Put the slope calculated in $2 a$, above, into words by filling in the blanks:

From point $C$ to point $D$ on the Phase Change Diagram, as time increases, the temperature $\qquad$ and therefore the slope has a positive ( + )

1 negative (-) sign. (circle one)

L3
Data for the melting of a different solid substance is recorded on the table: Heating of the substance tetangtoe - constant flow of heat added:

| Time (minutes) | Temperature ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- |
| 0 | 10 |
| 2 | 18 |
| 4 | 26 |
| 6 | 26 |
| 8 | 26 |
| 10 | 26 |
| 12 | 34 |
| 14 | 42 |
| 16 | 50 |

The data was graphed:

3. Determined the $y$ intercept and unit rate of change (slope) for the line between 0 and 4 minutes.
y intercept

Unit rate of change (slope)
4. Determine the formula for the line between 0 and 4 minutes using the $y$ intercept and slope calculated in 3 above.
5. Using the formula for the line between 0 and 4 minutes from question \#4, What will the temperature be after 3.25 minutes? Show work.
6. Why would you not use the formula from \#4 above to calculate the temperature at 15 minutes?

