Misp Plate Te	ctonics Worksheet #1 L1
	Date
SEA FLOOI	R SPREADING (L 1, 2, 3)

Introduction

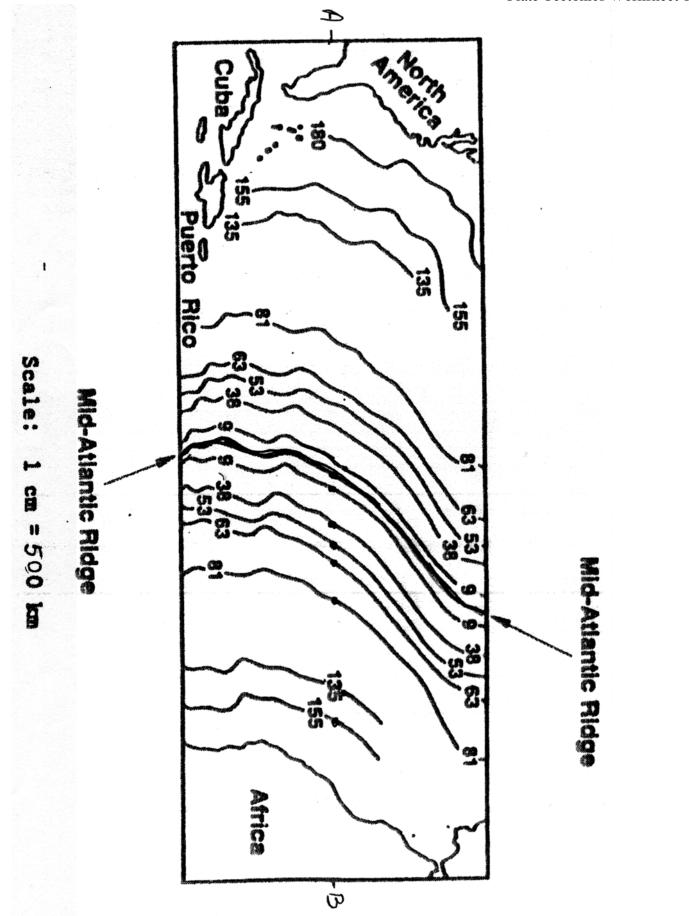
Name ____

You have already learned about Continental Drift, divergent, convergent, and transform plate boundaries, mid-ocean ridges, subduction, and the role that convection currents in the earth's mantle play in causing these phenomena. It seems that the different parts of our planet are moving. This movement has caused changes in the continents over time and also causes major geologic events like earthquakes and volcanoes. Are the earth's plates moving quickly or slowly -- should we have a seatbelt on when we are at home, sitting in a chair, and watching television?

Problem

How fast is the sea floor spreading? Has the sea floor always moved at the same speed?

Procedures

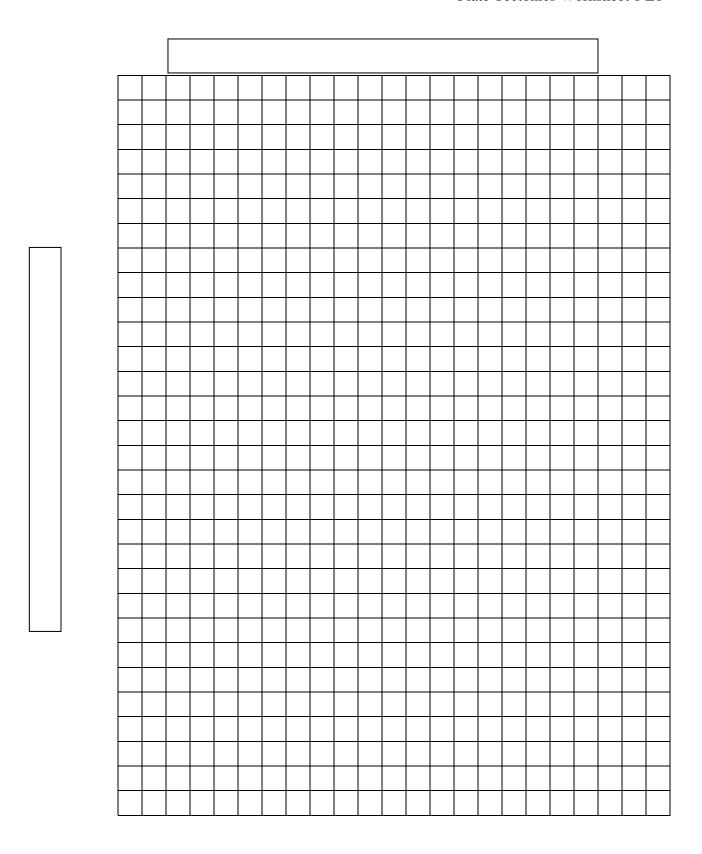

Scientists have been able to establish the ages of vast areas of rocks on the ocean bottom. The pattern in the ages of the rocks across the Mid-Atlantic Ridge is used as evidence of sea-floor spreading. In this activity, you will observe the pattern and learn to calculate the rate of sea floor spreading.

The diagram on the next page represents a section of the ocean floor in the North Atlantic. The numbers give the ages in millions of years for the rocks on the ocean floor located along the lines.

- 1. Locate the Mid-Atlantic Ridge and trace it in red.
- 2. Lightly shade in the age bands as follows:

0-9 million years	white
9-38 million years	red
38-63 million years	blue
63-81 million years	yellow
81-135 million years	green
135-180 million years	orange

- 3. Draw a line on the map from A to B with a ruler. This represents a path across the Atlantic Ocean from North America to Africa.
- 4. Use a ruler to measure the distance in cm, to the nearest tenth (0.1), from the midocean ridge to each of the positions shown by a dot. Put the measurements on the data chart in the column "distance from mid-Atlantic ridge in cm."
- 5. Complete the rest of the data chart by finding the actual distance in kilometers (1cm=500km). Actual distance (km) = column B (cm) \times 500 km/cm



Data table:

	ı	
Α	В	С
Age of sea-	Distance from	Actual Distance (km)
floor in	mid-Atlantic	cm × 500 km/cm
(millions of	ridge (cm) to	Column B × 500 = C
year) at dots	dots	
9		
38		
53		
63		
81		
135		
155		

Graph the data in the chart to show the relationship between age (millions of years) and the distance (km). Use the data in the columns highlighted in grey.

- Label the X axis with age (millions of years).
- Label the Y axis with distance (km).
- Plot the data points and label each with the date
- Connect the data points
- Draw a best fit line

Discussion L1-3

1. Use the information on your data chart and the formula below to determine the rate of sea floor spreading in the past 38 million years:

Rate	of	Movement	(cm/yr)	=distance	moved	(cm)
			-	time ((years)	

	a. Distance (from chart) =Km
	b. Convert this distance into centimeters by multiplying by 100,000. (100,000 cm 1 kilometer).
	Distance =cm
the ye	c. Use the equation above to calculate the rate. Note - add 6 zeros to the number ars column so that your calculation will produce the centimeters per <u>year</u> . Show work:
	Rate=cm/year
	the information on your data chart and the formula below to determine the rate of spreading in the past 135 million years: Rate of Movement (cm/yr) = distance moved (cm) time (years)
	a. Distance (from chart) =km
	b. Convert this distance into centimeters by multiplying by 100,000. (100,000 cm 1 kilometer).
	Distance =cm
the ye	c. Use the equation above to calculate the rate. Note - add 6 zeros to the number ars column so that your calculation will produce the centimeters per <u>year</u> .
	Show work:
	Rate= cm/year
	Rate=cm/year

3. Based on your calculations and looking at the graph, has the rate (speed) of sea floor spreading been the same over the past 135 million years? Explain.		
4. Describe the pattern in the ages of rocks on the seafloorWhere are the oldest rocks found?		
-What part of the ocean floor has the youngest rocks?		
5. Use the graph to predict the distance (km) from the mid-ocean ridge where rocks -		
75 million years old would be km		
185 million years old would be km		
6. Will you be able to see changes in the sea floor during your lifetime?		

ocks on Earth are located on continents and are about 3.5 billion years old Explain why the oldest rocks of the ocean floor are only 180 million years