MiSP Weather-Wind Speed and Direction Worksheet #2 L2

Name_____________________________ Date________________

Tornados – Pressure and Wind Speed

Introduction (excerpts from http://www.srh.noaa.gov/jetstream/tstorms/tornado.htm)

A tornado is a violently rotating (usually counterclockwise in the northern hemisphere) column of air descending from a thunderstorm and in contact with the ground.

The United States experiences more tornadoes by far than any other country. In a typical year about 1000 tornadoes will strike the United States. The peak of the tornado season is April through June and more tornadoes strike the central United States than any other place in the world. This area has been nicknamed "tornado alley."

Most tornadoes are spawned from thunderstorms. Tornadoes can last from several seconds to more than an hour but most last less than 10 minutes. The size and/or shape of a tornado are no measure of its strength.

Occasionally, small tornadoes do major damage and some very large tornadoes, over a quarter-mile wide, have produced only light damage.

The Fujita Scale

<table>
<thead>
<tr>
<th>F-Scale Number</th>
<th>Intensity Phrase</th>
<th>Wind Speed</th>
<th>Type of Damage Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>Gale tornado</td>
<td>40-72 mph</td>
<td>Some damage to chimneys; breaks branches off trees; pushes over shallow-rooted trees; damages sign boards.</td>
</tr>
<tr>
<td>F1</td>
<td>Moderate tornado</td>
<td>73-112 mph</td>
<td>The lower limit is the beginning of hurricane wind speed; peels surface off roofs; mobile homes pushed off foundations or overturned; moving autos pushed off the roads; attached garages may be destroyed.</td>
</tr>
<tr>
<td>F2</td>
<td>Significant tornado</td>
<td>113-157 mph</td>
<td>Considerable damage. Roofs torn off frame houses; mobile homes demolished; boxcars pushed over; large trees snapped or uprooted; light object missiles generated.</td>
</tr>
</tbody>
</table>
The Fujita (F) Scale was originally developed by Dr. Tetsuya Theodore Fujita to estimate tornado wind speeds based on damage left behind by a tornado.

---

**Problem:** Two variables that can be measured in tornados are the core pressure difference (the difference between the air pressure inside the funnel and the air pressure outside the funnel) and wind speed. You will use a computer simulation to examine the correlation between these two variables. **As the difference between the air pressure inside a tornado funnel and the air pressure outside a tornado funnel increases, what happens to the wind speed?**

**Hypothesis:** If the difference between the air pressure inside a tornado funnel and the air pressure outside a tornado funnel increases then ______________________________

______________________________

---

**Procedures**

   - Keep the funnel diameter constant (move the left slider to the far left – the narrowest funnel)
   - Use the right slider to increase the core pressure difference in intervals of 1.0 in. Hg (inches of mercury). Click GO to observe a tornado.
   - Observe the damage each tornado produces.
   - Estimate the F (Fujita Scale) difference and record F scale number and the wind speed on the data chart below.
   - Press reset between each trial.
2. Complete the data chart:

<table>
<thead>
<tr>
<th>Core Pressure Difference (in. Hg)</th>
<th>Wind Speed (mph)</th>
<th>Intensity (F Scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 (no tornado)</td>
<td>Not applicable (no tornado)</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Graph the data on the next page to show the relationship between the core pressure difference (in Hg) and the wind speed (mph)

- Label the X axis
- Label the Y axis
- Connect the data points by drawing a straight line between them.
Discussion L1-3

1a. Explain the relationship between tornado core pressure difference and wind speed by completing this statement: **As the DIFFERENCE between the air pressure inside a tornado and the air pressure outside a tornado INCREASES**, the wind speed of the tornado _________________.

1b. How is the relationship in 1a shown by the graph?

________________________________________________________________________

________________________________________________________________________

2. The relationship between core pressure difference and wind speed is not a straight line. On the graph, where did a 1.0 in. Hg increase in core pressure produce the greatest change in wind speed? How do you know that – refer to the data or the graph?

________________________________________________________________________

________________________________________________________________________

3. Using the graph, predict what a tornado’s wind speed would be if the core pressure difference is 7.0 in. Hg.

________________________________________________________________________

________________________________________________________________________
Discussion L2-3

4. Compare the changes in wind speed in two regions of the graph (0 to 1.0 in. Hg and 5.0 to 6.0 in. Hg) by calculating the unit rate of change (slope).

Unit Rate of Change = \( \frac{\Delta \text{ Wind Speed (mph)}}{\Delta \text{ Pressure (in. Hg)}} = \frac{\Delta y}{\Delta x} = \frac{(y_2 - y_1)}{(x_2 - x_1)} \)

<table>
<thead>
<tr>
<th>Section of Graph</th>
<th>Ordered Pair used for calculation ((x_1, y_1)) ((x_2, y_2))</th>
<th>(\Delta) Wind Speed (mph) (\Delta y)</th>
<th>(\Delta) Pressure (in. Hg) (\Delta x)</th>
<th>Unit Rate of Change (slope) (\Delta y/\Delta x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1.0 in. Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 - 6.0 in. Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5a. How do the unit rates of change (slopes) of the two sections of the graph compare? Discuss numerical value and sign (positive/+ or negative/-).

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

5b. According to the unit rates of change, in which section of the graph did an increase in pressure difference result in the greatest change in the wind speed?

________________________________________________________________________

________________________________________________________________________
5c. Look at the graph. How would the unit rate of change (slope) for the line segment from 3.0 to 4.0 in. Hg compare to the unit rates of change for the lines segments from 0 to 1.0 and 5.0 to 6.0 in. Hg?

__________________________________________________________

__________________________________________________________