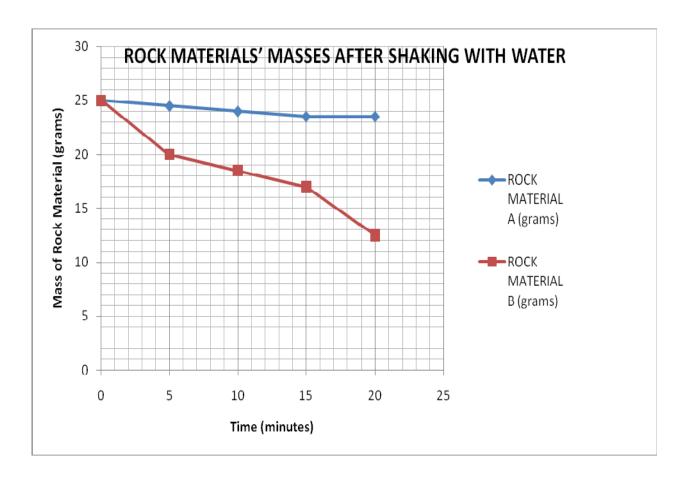
MiSP Weathering and Erosion Worksheet #3 - Assessment L1

Name	Date
L1-3	
1-2 Define the words listed below:	
1. Weathering	
3	
2. Erosion	
3a. Is it possible to have weathering without erosion? Ex no.	plain you why you answered yes or
3b. Is it possible to have erosion without weathering? Exno.	
	


4. Think about the MASS WASTING - GLACIAL CREEPING experiment and worksr What happens to the speed of a glacier or other slow moving examples of mass wast when it moves down a slope – do they slow down, speed up, or does the speed remain constant? Why?				wasting	

5-7 Base your answers on the data table and graph below. Samples of three different rock materials, A, B, and C were placed in three containers of water and shaken vigorously for 20 minutes. Every five minutes, the rocks were strained through a screen. The mass of the rock materials trapped by the screen were dried and their mass was measured. This is the data table:

ROCK MATERIALS' MASSES AFTER SHAKING WITH WATER

SHAKING TIME	ROCK MATERIAL A	ROCK MATERIAL B	ROCK MATERIAL C
(minutes)	(grams)	(grams)	(grams)
0	25.0	25.0	25.0
5	24.5	20.0	17.5
10	24.0	18.5	12.5
15	23.5	17.0	7.5
20	23.5	12.5	5.0

The data for Rock Material A and Rock Material B is graphed on the next page:

5. Graph the data for Rock Material ${\it C}$ on the graph above. Use points and surround each point with a small circle. Connect the points:

 \odot

6. Refer to the graph. Which sample (A, B, or C) lost the **most** mass in the **first** five minutes? Which sample lost the **most** mass in the **last** five minutes?

-most in the first five minutes	
---------------------------------	--

-most in the last five minutes:

7. What are the most likely reasons for the differences in the rate (speed) that mass was lost in the three rock samples?				